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Abstract
In this work we leverage feature visualization to probe the
bounds of feature combinations in the InceptionV1 object
recognition model (Szegedy et al., 2015). While our tech-
nique also yields conventional/viewable feature visualiza-
tions, we demonstrate how such optimizations can reveal
contingencies between feature pairs that are difficult to
infer from their responses to natural images alone. We
propose a data visualization motif that is ideal for quickly
assessing the relations between arbitrary feature pairs.
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Figure 1: What’s this?

Introduction
What do you see in Figure 1? According to Dalle-3 (Betker et
al., 2023), it’s a depiction of a ’broccoli elephant’. Despite the
unnatural feature combination, the model represents it ’cor-
rectly’, in that we perceive ’broccoli’ and ’elephant’ simultane-
ously in the generated image. While it’s easy to probe gen-
erative models for unusual feature combinations like this (just
give them zany prompts), it’s not obvious how to do so in dis-
criminative models. That said, we know discriminative mod-
els have the potential to be very expressive in their feature
combinations; after all, our own visual system has no problem
representing the broccoli elephant as such.

This raises an important question when assessing features
in discriminative models; namely, what features combination
are possible for the model, and how do we disentangle pos-
sibility from the feature covariances introduced by the input
data generating process? It may be that some feature com-
binations are possible but others aren’t, given the way that
each feature is computed. For example, can a percept be
simultaneously pointy and rounded? What if ’pointy’ and
’rounded’ are computed like the functions pointy(x) = x and
rounded(x) =−x? There could be no such image x that was
pointed and rounded in such a case.

Feature Combinations with Optimization

In this work, we will test if feature combinations are possible
by optimizing the model’s inputs. Given a model, let’s denote a
function that computes a set of features fff (xxx) : X → Y , where
X is the domain of the model. Here we will consider features
that correspond to latent neurons in a neural network, but the
technique we introduce is extendable to features defined in
other ways, so long as fff is differentiable. Additionally, we’ll
constrain ourselves to the simple case of feature pairs; i.e.
activations yyy ∈ Y ⊆ R2. Given our features are continuous,
we can formalize feature combinations as all the directions in
which the feature vector yyy can point. In R2, direction can be
parameterized by a single value, the angle θ between yyy and
[1,0]. We can optimize for any θ (feature combination) by
maximizing the cosine similarity between yyy and the unit vector
[sin(θ),cos(θ)]. However, this objective may not be sufficient
for generating feature combinations, as cosine similarity is in-
variant to changes in the magnitude of yyy. We wouldn’t want
our probe for feature combinations to result in ’solutions’ that
yield small activation for both features. Luckily, the cosdot ob-
jective has previously been proposed/utilized for the purposes
of feature visualization (Carter, Armstrong, Schubert, John-
son, & Olah, 2019; Mordvintsev, Pezzotti, Schubert, & Olah,
2018; Olah, Mordvintsev, & Schubert, 2017), and is well suited
to our needs. The cosdot objective multiplies the dot product
of two vectors by their cosine similarity; thus one can opti-
mize one vector, yyy, with respect to a target vector hhh, such that
the optimized vector is encouraged to both decrease its angle
with the target (cosine similarity) and increase its overall mag-
nitude (dot product). Given some target feature combination
θ, the cosdot (C ) objective yields;

C (yyy,θ; p) :=
(yyy ·hhh)p+1

(||yyy|| · ||hhh||)p with hhh := [cos(θ),sin(θ)]

p is a hyperparameter that controls how much weight is to be
placed on the cosine similarity (direction). We set p = 4 for all
experiments conveyed in this paper. Given this objective, we
can attempt to optimize for images that yield arbitrary feature
combinations;

xxx∗ = argmax
xxx∈X

C ( fff (xxx);θ, p)

We can optimize for xxx∗ with gradient ascent, augmented
with additional feature visualization tricks (Fel et al., 2023).



Figure 2: Pair-wise ’feature combination plots’

Experiment and Visualization

Here, we will test our optimization technique on pairs of latent
InceptionV1 (Szegedy et al., 2015) neurons, and demonstrate
our methods for visualizing the results to garner maximal in-
sight. We begin by generating latent feature activations in re-
sponse to a sample from the ImageNet (Deng et al., 2009)
dataset. We do this to provide a criterion for selecting neural
pairs to investigate. For example, in Figure 2. above, we vi-
sualizing pairs of neurons that yield the highest, lowest, and
closest to zero correlation in their respective layer. We next
optimize conventional feature visualizations (neuron-wise ac-
tivation maximization) for each neuron in the pair, in order to
define a scale with which to normalization yi and y j. We are
effectively scaling the activations by those values we get when
the optimization process is unconstrained by direction. Finally,
we optimize C ( fff (xxx),θ), targeting 60 distinct θ evenly spaced
on [0−2π]. We repeated this procedure 5 times under differ-
ent noise seeds for each feature pair tested.

Fig 2 shows the results of this experiment for several fea-
tures, which we will explore in turn. First though, let’s ori-
ent ourselves to parsing these feature combination plots in
the general case. First, the axes convey the pairwise feature
space Y . As mentioned, each axis is scaled by the maximum
y∗i achieved with optimization, the tip of each axis corresponds
to this value. The scatter plot shows for each θ that yyy∗

θ
which

maximized C across the 5 seeds. For every other value of θ

we also show the synthesized image xxx∗
θ
, just beyond the yyy∗

θ

it induced. The grey point cloud shows the activations of yyy in
response to ImageNet data, conveyed on the same scale. Fi-
nally, the red line conveys the average score of C (yyy,θ) across
random seeds. We place this value on the plot using polar
coordinates, drawing a red point at (∑C ,θ), then connecting
them in a loop. Importantly, C exists in a different space than
Y , while θ does not. This means, we are free to scale the red
loop from the origin, but not rotate or translate it.

So, what can such plots actually tell us? Let’s start with the
example depicted in Figure 2.a, which conveys the most anti-
correlated feature pair in layer ’conv2d2’. The feature pair is
excited by gratings in opposite orientations, and positive co-
activation only rarely happens in response to natural data.
Additionally, we can see that co-activation is very difficult to
optimize for, as indicated by the combination score (red loop)
collapsing in the upper right quadrant. We find it curious that
the quadrant which is asymmetrical with the others is precisely
that which will bypass the relu in the next operation. It sug-
gests this feature pair is made impossible through a learned
constraint mechanism, and that co-occurrence would induce
loss downstream. Importantly, our plots show that other fea-
ture pairs (Figure 2.b) in the model are anti-correlated but do
not show this ’impossibility’ signature. Finally, in Figure 2.c we
see two pairs of features that each show 0 covariance in their
activations to ImageNet, but disambiguate in their combina-
tion plots. In their limit of activation, it appears the first pair
compete linearly; as one increases the other must decrease



proportionally in activation, tracing the contour of an L1 norm.
The second pair approximate a much higher p-norm, taking
on all possible combinations with little trade-off in activation
magnitude.

Examples like these may only scratch the surface of possi-
ble feature combination motifs. That said, the space of explo-
ration is quite large - how should we select features for com-
bination? We are excited to see what pairings the community
comes up with.
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